285 research outputs found

    Populations with interaction and environmental dependence: from few, (almost) independent, members into deterministic evolution of high densities

    Get PDF
    Many populations, e.g. of cells, bacteria, viruses, or replicating DNA molecules, start small, from a few individuals, and grow large into a noticeable fraction of the environmental carrying capacity KK. Typically, the elements of the initiating, sparse set will not be hampering each other and their number will grow from Z0=z0Z_0=z_0 in a branching process or Malthusian like, roughly exponential fashion, ZtatWZ_t \sim a^tW, where ZtZ_t is the size at discrete time tt\to\infty, a>1a>1 is the offspring mean per individual (at the low starting density of elements, and large KK), and WW a sum of z0z_0 i.i.d. random variables. It will, thus, become detectable (i.e. of the same order as KK) only after around logK\log K generations, when its density Xt:=Zt/KX_t:=Z_t/K will tend to be strictly positive. Typically, this entity will be random, even if the very beginning was not at all stochastic, as indicated by lower case z0z_0, due to variations during the early development. However, from that time onwards, law of large numbers effects will render the process deterministic, though initiated by the random density at time log KK, expressed through the variable WW. Thus, WW acts both as a random veil concealing the start and a stochastic initial value for later, deterministic population density development. We make such arguments precise, studying general density and also system-size dependent, processes, as KK\to\infty. As an intrinsic size parameter, KK may also be chosen to be the time unit. The fundamental ideas are to couple the initial system to a branching process and to show that late densities develop very much like iterates of a conditional expectation operator.Comment: presented at IV Workshop on Branching Processes and their Applications at Badajoz, Spain, 10-13 April, 201

    Evolutionary branching in a stochastic population model with discrete mutational steps

    Full text link
    Evolutionary branching is analysed in a stochastic, individual-based population model under mutation and selection. In such models, the common assumption is that individual reproduction and life career are characterised by values of a trait, and also by population sizes, and that mutations lead to small changes in trait value. Then, traditionally, the evolutionary dynamics is studied in the limit of vanishing mutational step sizes. In the present approach, small but non-negligible mutational steps are considered. By means of theoretical analysis in the limit of infinitely large populations, as well as computer simulations, we demonstrate how discrete mutational steps affect the patterns of evolutionary branching. We also argue that the average time to the first branching depends in a sensitive way on both mutational step size and population size.Comment: 12 pages, 8 figures. Revised versio

    On the establishment of a mutant

    Get PDF
    How long does it take for an initially advantageous mutant to establish itself in a resident population, and what does the population composition look like then? We approach these questions in the framework of the so called Bare Bones evolution model Klebaner et al (2011) that provides a simplified approach to the adaptive population dynamics of binary splitting cells. As the mutant population grows, cell division becomes less probable, and it may in fact turn less likely than that of residents. Our analysis rests on the assumption of the process starting from resident population, with sizes proportional to a large carrying capacity KK. Actually, we assume carrying capacities to be a1Ka_1K and a2Ka_2K for the resident and the mutant populations, respectively, and study the dynamics for KK\to\infty. We find conditions for the mutant to be successful in establishing itself alongside the resident. The time it takes turns out to be proportional to logK\log K. We introduce the time of establishment through the asymptotic behavior of the stochastic nonlinear dynamics describing the evolution, and show that it is indeed logK/logρ\log K/\log \rho, where ρ>1\rho>1 is twice the probability of successful division of the mutant at its appearance. Looking at the composition of the population, at times logK/logρ+n,nZ+\log K/\log \rho +n, n \in \mathbb{Z}_+, we find that the densities (i.e. sizes relative to carrying capacities) of both populations follow closely the corresponding two dimensional nonlinear deterministic dynamics that starts at {\it a random point}. We characterise this random initial condition in terms of the scaling limit of the corresponding dynamics, and the limit of the properly scaled initial binary splitting process of the mutant. The deterministic approximation with random initial condition is in fact valid asymptotically at all times logK/logρ+n\log K/\log \rho +n with nZn\in \mathbb{Z}

    Extinction, Persistence, and Evolution

    Get PDF
    Extinction can occur for many reasons. We have a closer look at the most basic form, extinction of populations with stable but insufficient reproduction. Then we move on to competing populations and evolutionary suicide

    Stochasticity in the adaptive dynamics of evolution: The bare bones

    Get PDF
    First a population model with one single type of individuals is considered. Individuals reproduce asexually by splitting into two, with a population-size-dependent probability. Population extinction, growth and persistence are studied. Subsequently the results are extended to such a population with two competing morphs and are applied to a simple model, where morphs arise through mutation. The movement in the trait space of a monomorphic population and its possible branching into polymorphism are discussed. This is a first report. It purports to display the basic conceptual structure of a simple exact probabilistic formulation of adaptive dynamics

    Mutation, selection, and ancestry in branching models: a variational approach

    Full text link
    We consider the evolution of populations under the joint action of mutation and differential reproduction, or selection. The population is modelled as a finite-type Markov branching process in continuous time, and the associated genealogical tree is viewed both in the forward and the backward direction of time. The stationary type distribution of the reversed process, the so-called ancestral distribution, turns out as a key for the study of mutation-selection balance. This balance can be expressed in the form of a variational principle that quantifies the respective roles of reproduction and mutation for any possible type distribution. It shows that the mean growth rate of the population results from a competition for a maximal long-term growth rate, as given by the difference between the current mean reproduction rate, and an asymptotic decay rate related to the mutation process; this tradeoff is won by the ancestral distribution. Our main application is the quasispecies model of sequence evolution with mutation coupled to reproduction but independent across sites, and a fitness function that is invariant under permutation of sites. Here, the variational principle is worked out in detail and yields a simple, explicit result.Comment: 45 pages,8 figure

    Entropy and Hausdorff Dimension in Random Growing Trees

    Full text link
    We investigate the limiting behavior of random tree growth in preferential attachment models. The tree stems from a root, and we add vertices to the system one-by-one at random, according to a rule which depends on the degree distribution of the already existing tree. The so-called weight function, in terms of which the rule of attachment is formulated, is such that each vertex in the tree can have at most K children. We define the concept of a certain random measure mu on the leaves of the limiting tree, which captures a global property of the tree growth in a natural way. We prove that the Hausdorff and the packing dimension of this limiting measure is equal and constant with probability one. Moreover, the local dimension of mu equals the Hausdorff dimension at mu-almost every point. We give an explicit formula for the dimension, given the rule of attachment

    Characterizing the Initial Phase of Epidemic Growth on some Empirical Networks

    Full text link
    A key parameter in models for the spread of infectious diseases is the basic reproduction number R0R_0, which is the expected number of secondary cases a typical infected primary case infects during its infectious period in a large mostly susceptible population. In order for this quantity to be meaningful, the initial expected growth of the number of infectious individuals in the large-population limit should be exponential. We investigate to what extent this assumption is valid by performing repeated simulations of epidemics on selected empirical networks, viewing each epidemic as a random process in discrete time. The initial phase of each epidemic is analyzed by fitting the number of infected people at each time step to a generalised growth model, allowing for estimating the shape of the growth. For reference, similar investigations are done on some elementary graphs such as integer lattices in different dimensions and configuration model graphs, for which the early epidemic behaviour is known. We find that for the empirical networks tested in this paper, exponential growth characterizes the early stages of the epidemic, except when the network is restricted by a strong low-dimensional spacial constraint, such as is the case for the two-dimensional square lattice. However, on finite integer lattices of sufficiently high dimension, the early development of epidemics shows exponential growth.Comment: To be included in the conference proceedings for SPAS 2017 (International Conference on Stochastic Processes and Algebraic Structures), October 4-6, 201

    Discrete Feynman-Kac formulas for branching random walks

    Full text link
    Branching random walks are key to the description of several physical and biological systems, such as neutron multiplication, genetics and population dynamics. For a broad class of such processes, in this Letter we derive the discrete Feynman-Kac equations for the probability and the moments of the number of visits nVn_V of the walker to a given region VV in the phase space. Feynman-Kac formulas for the residence times of Markovian processes are recovered in the diffusion limit.Comment: 4 pages, 3 figure
    corecore